EDV- & Datennetztechnik

Ein stabiles Datennetz ist die Grundlage für eine funktionierende EDV Struktur. Das verwendete Medium, Glasfaser, Datenkabel oder WLan, spielt dabei eine untergeordnete Rolle.

Die Firma Dunkelberg projektiert und ermittelt für Sie die optimale Datennetzlösung!

Bei uns bekommen Sie alles aus einer Hand. Das Verlegen der Kabel, liefern, montieren und konfigurieren passiver oder aktiver Hardwarekomponenten. Das anschliessende Messen und Protokollieren der Leitungen, unsere geschulten Mitarbeiter erledigen dies für Sie!

Datenschränke - 19" Rack

Im Rechenzentrumsbetrieb und der Veranstaltungs-, Labor- und Regeltechnik steht der Begriff Rack (engl. 19-inch rack) für ein Gestell für Elektrogeräte mit einer genormten Breite von 19 Zoll, bei dem die einzelnen Geräte („Einschübe“), die sich im Rack montieren lassen, eine Frontplatten-Breite von genau 48,26 Zentimeter (≙19″) aufweisen (z. B.: Baugruppenträger). Eine Höheneinheit (HE, im Englischen auch rack unit [U, selten: RU]) ist mit 1,75 Zoll (≙4,445 cm) spezifiziert, eine Teilungseinheit (TE) für die Modulbreite innerhalb eines Einschubs mit 1/5 Zoll (≙ 5,08 mm).

Das 19-Zoll-Rack System ist für gute Kompatibilität genormt (EIA 310-D, IEC 60297 und DIN 41494 SC48D). Die Frontplatten der Einschübe sind demnach ein Vielfaches einer Höheneinheit, welche 1,75 Zoll entspricht. Für etwas Spielraum beim Ein- und besonders Ausbau werden von Frontplatten einmal 1/32 Zoll (entspricht 0,787 mm) abgezogen. Befestigt werden die Geräte mit je 4 Schrauben in den Lochreihen senkrecht laufender Blechwinkel nahe den Vorderkanten des Regals (shelf). Diese Bleche sind etwa 2 mm stark (Stahl: mindestens 1,9 mm, Alu: stärker) sowie je 5/8 Zoll (15,88 mm ) breit und bilden so eine 450,85 mm (entspricht 19" minus 2x 5/8" = 17,75″) breite Öffnung. Die Lochreihen haben horizontal 465,14 mm (18 5/16″) Mittenabstand. Je Höheneinheit (1,75″) liegen 3 Löcher in 2 Abständen von 15,88 mm (0,625″) übereinander, der Abstand zum ersten Loch der nächsten Höheneinheit ist mit 12,70 mm (≙0,5″) etwas geringer, so ergibt sich eine sichtbar rhythmische Wiederholung der Lochabstände. Die Löcher weisen in den USA eher Gewindebohrungen auf: Das feine #10-32 (tpi) UNF (ca. 4,8 mm Außen-Durchmesser), oder die gröberen UNC-Gewinde #12-24 (ca. 5,5 mm) und 1/4″ (20 tpi) (6,35 mm), seltener kommen metrische M5 oder M6 vor. Kostengünstiger ist die Ausstattung der Bleche mit quadratischen oder runden Stanzlöchern, in die nur bei Bedarf Schnapp- oder Käfigmuttern eingesetzt werden.

Beim Kauf von Netzwerkschränken ist stets auf die Maße der einzubauenden Geräte zu achten. Schränke werden immer in Außenbreite und Außentiefe angegeben. Lediglich die Einbauhöhe wird in HE beziffert. Marktüblich wäre beispielsweise ein Schrank 42 HE 600×800. Dies bedeutet, dass der Schrank eine nutzbare Rasterung von 42 HE hat, hingegen 600 mm Außenbreite und 800 mm Außentiefe. Die nutzbare Innenbreite und Innentiefe ist von Hersteller zu Hersteller unterschiedlich und muss beachtet werden.

Standard-Racks für Rechenzentren sind etwa 2 Meter hoch und bieten meist einen Netto-Raum von 42 HE. Es gibt sie in Bautiefen von 60, 80, 100 oder 120 Zentimeter und Baubreiten von 60, 70 oder 80 Zentimeter. Die größeren Baubreiten bieten seitlichen Zusatzraum für eine strukturierte Verkabelung oder für die Stromversorgung. Die Racks können mit Seitenwänden oder Türen zu Schränken geschlossen werden.

Ein Einschub für Einsteckplatinen oder Baugruppen in Euro-Platinen-Format (100×160 mm) ist 3 HE hoch und umfasst 84 TE, die z. B. beim VMEbus bis zu 20 Platinen Platz bieten (je Platine werden 4 TE gerechnet), rechts und links werden je 2 TE für die Abschlusswiderstände benötigt. Bei größeren Platinen wird das Doppel-Euro-Format (233×160 mm) mit 6 HE verwendet.

( Quelle: Wikipedia )

Switch

In Computer-Netzwerken wird als Switch (vom Englischen für „Schalter“, „Umschalter“ oder „Weiche“) – auch Netzwerkweiche oder Verteiler genannt – ein Kopplungselement bezeichnet, das Netzwerksegmente miteinander verbindet. Es sorgt innerhalb eines Segments (Broadcast-Domain) dafür, dass Datenframes (im Folgenden als Frame bezeichnet) an ihr Ziel gelangen. Im Unterschied zu einem auf den ersten Blick sehr ähnlichen Repeater-Hub werden Frames aber nicht einfach an alle anderen Ports weitergeleitet, sondern nur an den, an dem das Zielgerät angeschlossen ist – ein Switch trifft eine Weiterleitungsentscheidung anhand der selbsttätig gelernten Hardware-Adressen der angeschlossenen Geräte.

Der Begriff Switch bezieht sich allgemein auf eine Multiport-Bridge – ein aktives Netzwerkgerät, das Frames anhand von Informationen aus dem Data Link Layer (Layer 2) des OSI-Modells weiterleitet. Manchmal werden auch die korrekteren Bezeichnungen Bridging Hub oder Switching Hub verwendet. Der erste „EtherSwitch“ wurde im Jahr 1990 von Kalpana eingeführt. „Switch“ stammt eigentlich aus der leitungsvermittelnden Technik und gibt nicht die Funktion des Geräts wieder.

Switches, die zusätzlich Daten auf der Netzwerkschicht (Layer 3 und höher) verarbeiten, werden oft als Layer-3-Switches oder Multilayer-Switches bezeichnet. Das dem Switch vergleichbare Gerät auf Netzwerkschicht 1 (Layer 1) wird als (Repeater-)Hub bezeichnet. Neben Ethernet-Switches gibt es auch Fibre Channel (FC) Switches. FC definiert ein nicht routingfähiges Standardprotokoll aus dem Bereich der Speichernetzwerke, das als Nachfolger von SCSI für die Hochgeschwindigkeitsübertragung großer Datenmengen konzipiert wurde. ( Quelle: Wikipedia )

Daten Anschlußdose

Für die strukturierte Verkabelung führen wir Anschlussdosenlösungen, die ein Höchstmaß an Flexibilität gewährleisten. Ob modulare oder kompakte Anschlussdosen, Unterflureinheiten oder Anschlüsse für die Hutschiene, wir bieten in unterschiedlichen Leistungsklassen Möglichkeiten für Kupfer- (RJ45) und LWL-Anschlüsse mit verschiedenen Port-Zahlen. Neben Lösungen mit Modul-Einbauform führen wir auch Keystone-Einbauform.

Netzwerk mit Ethernet

Die verbreitetste Technik bei leitungsgebundenen Netzen ist das Ethernet, das vor allem in lokalen Firmennetzen und Heimnetzen Verwendung findet. Es wird heute mit Kupferkabeln in den Ausprägungen 10BASE-T, 100BASE-TX und 1000BASE-T erstellt und verwendet. Dabei bezeichnet die Zahl jeweils die theoretische maximale Übertragungsgeschwindigkeit (Kanalkapazität) von 10, 100 oder 1000 Mbit pro Sekunde. Das T sagt aus, dass es sich um ein verdrilltes Kupferkabel handelt (Twisted Pair). Je nach Geschwindigkeit ist ein Kabel der entsprechenden Qualität nötig, die nach Kategorien standardisiert ist. Für 100 Mbit ist dies z. B. CAT5, bei 1000 Mbit ist CAT5e, CAT5+ oder CAT6 zu verwenden. Es gibt ebenfalls unterschiedliche Standards, um Ethernet über Glasfaserverbindungen zu realisieren, z. B. 10BASE-FL, 100BASE-FX, 1000BASE-SX/-LX und verschiedene 10-Gigabit-Standards beginnend mit "10GBASE-".

Das ursprüngliche Zugriffsverfahren bei Ethernet ist CSMA/CD (Carrier Sense Multiple Access / Collision Detection), wobei jeder Rechner erst überprüft, ob die Leitung (Carrier) frei ist und, wenn dies der Fall ist, sendet. Es kann sein, dass ein weiterer Rechner dasselbe tut und es zur Kollision kommt. Sobald diese Kollision erkannt wird (Collision Detection), brechen beide Rechner das Senden ab und beide probieren es zu einem zufälligen Zeitpunkt später erneut. Die Adressierung erfolgt mittels der MAC-Adresse.

Die inzwischen weitaus häufiger anzutreffende Form ist die eines "geswitchten" Netzwerks, bei denen intelligentere Konzentratoren (Switches) verwendet werden, die einen kollisionsfreien Vollduplex-Betrieb erlauben und in Summe einen wesentlich höheren Gesamtdurchsatz ermöglichen. ( Quelle: Wikipedia )